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TANGENT BUNDLES OF HYPERBOLIC SPACES AND

PROPER AFFINE ACTIONS ON Lp SPACES

INDIRA CHATTERJI, FRANÇOIS DAHMANI, THOMAS HAETTEL AND
JEAN LÉCUREUX

Introduction

Let G be a locally compact, second countable group, and V be a
normed vector space. The group of affine isometries of an affine space

of linear part V , is isomorphic to V ⋊
−−→
IsomV , where

−−→
IsomV is the

group of linear isometries of V . Thus, an isometric affine action of G

on V gives, by quotient, a representation λ : G →
−−→
IsomV , and, by

cancellation with a section, a map c : G → V satisfying the cocycle
condition for λ, namely

c(gh) = c(g) + λ(g)c(h)

for all g, h ∈ G. Conversely, a representation λ : G →
−−→
IsomV and a

cocycle c : G → V produce an affine isometric action of G on V (seen
as affine space) by the formula

gv = λ(g)v + c(g).

The cocycle c is a coboundary, meaning that it satisfies c(g) = d−λ(g)d
(for some d ∈ V and any g ∈ G) if and only if there is a fixed vector
in V for G (in which case, it is that vector d). The cocycle is proper
(meaning that ‖c(gn)‖ → ∞ if gn → ∞ in the sense that it leaves
every compact subset of G) if and only if the action is metrically proper
(meaning that for all v, ‖gnv‖ → ∞ if gn → ∞).

For V a Hilbert space, the existence of a proper isometric action of
G on V is the Haagerup property for G, and, if G is not compact, is
a fierce negation of property (T), since the latter is equivalent to the
existence of a fixed point for any action on a Hilbert space.

In this note we are interested in the case where V is an Lp-space
for p > 1. A proper action of G on an Lp-space is a weakening of a
too strong rigidity property of the type of property (T). A contrario,
according to [BFGM07], the lattices SLn(Z), for n ≥ 3, have a fixed
point property for all actions on Lp-spaces (for 1 < p < ∞).

Discrete countable groups acting properly discontinuously on CAT(0)
cubical complexes do act properly on a Hilbert (or L2) space [NR97,
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NR98]. All hyperbolic groups do act properly on some Lp-space, for
some p > 1 [Yu05, AL17, Nic13], whereas there are hyperbolic groups
with property (T) (for instance lattices in Sp(n, 1) according to Kostant
[Kos69]). Fisher-Margulis according to [BFGM07] show that if a group
has property (T), then there is an ǫ > 0 such that this group has a
fixed point for any action on an Lp and for all p ∈ [2, 2 + ǫ).

Let us illustrate these results in the case of G a free group. Let E
be the set of oriented edges of a tree on which G acts freely and let
V1 = ℓ2(E ,R). The representation λ is induced by the action of G on
the tree. Let d be the vector of ℓ∞(E ,R) defined by d(e) = 1 if e points
toward 1 in the tree (meaning that the end of e is closer to 1 than the
origin of e), and d(e) = 0 otherwise (note that d is not in V1 as it takes
value 1 on an infinite set). Then c(g) = d−λ(g)d is a map a priori from
G to ℓ∞(E ,R). It is a coboundary, hence a cocycle. But the support of
c(g) is the set of edges in the oriented segments [1, g] and [g, 1]. These
supports are finite, and therefore c takes its values in V1. One checks
that ‖c(g)‖ grows like the square root (because we are in ℓ2) of the
length of the interval [1, g] in the tree, hence the cocycle c is proper.

Now, let V2 = ℓ2(G, ℓ1(G,R)) ⊆ ℓ2(G × G,R). If the tree on which
G acts is the Cayley tree, the representation λ is the natural one,
extending to the diagonal action of G on G × G. We define a vector
d ∈ ℓ∞(G, ℓ1(G,R)) as the map that, to h 6= 1 associates the Dirac
mass on the neighbor of h closest to 1, and d(1) is the null function.
One notices that under the natural embedding of E ⊆ G × G, this d
extends by 0 the vector constructed above. Again, d ∈ ℓ∞(G, ℓ1(G,R)),
but d is not in V2. Defining c(g) = d− λ(g)d, one gets a cocycle from
G to a priori ℓ∞(G, ℓ1(G,R)), but that actually takes values in V2

since c(g) has finite support for all g. Indeed, for a fixed h ∈ G, the
map c(g)(h) : G → R is null everywhere except possibly on the two
neighbors of h that are respectively closer to 1 and to g, on which it
takes values 1 and −1, or 0 if these points are equal. Hence for g fixed,
the map c(g)(·) : G → R is finitely supported on the interval [1, g] in
the tree and has ℓ2 norm proportional to the distance between 1 and
g, showing that c is in fact a proper cocycle.

This idea has been generalized using a coarse version of "taking the
neighbor closest to 1". The constructions involved in [Yu05] and in
[AL17] use a coarse geodesic flow from 1 to h and from g to h and the
comparison of the arrivals of these flows. In free groups, they arrive
exactly at the same point if h is not on the segment [1, g], but in
hyperbolic groups, there could be a difference. Still, this difference is
exponentially small in the Gromov product (1| g)h, allowing to adjust
the exponent p to beat the growth of the group.
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In all these cases, one has to evaluate "how much" an element h
should be thought of as being between 1 and g. In both cases, one
estimates the difference between how one does see 1 from h and how
one does see g from h.

In this note, we cast this point of view in the language of tangent
bundles. We define a suitable notion of a tangent space for a metric
measured space, endowed with a group action, and give a definition
of negative curvature for such a tangent space. We then prove that
properties of this tangent space give rise to an action of our group on
some Lp space, which is proper under some suitable assumptions.

A Radon measure µ on a locally compact geodesic hyperbolic space
X is non-collapsing if there exists two constants C ≥ 0, and v > 0,
such that for all x ∈ X, one has that µ(B(x, C)) ≥ v. For instance,
the counting measure on a locally finite graph is non-collapsing, and
the volume form on a simply connected complete Riemannian man-
ifold with sectional curvature ≤ −1 is non-collapsing, by Gunther’s
inequality (see [GHL04, Theorem 3.101 (ii)]).

Recall that the volume entropy of such a measure µ is the exponential
growth rate of the µ-measure of balls in X (see Definition 2.1).

Theorem 0.1. Let δ ≥ 0 and X be a locally compact geodesic δ-
hyperbolic space, and let µ denote an non-collapsing Radon measure
on X. Let h ≥ 0 denote the volume entropy of µ. Assume that a sec-
ond countable locally compact group G acts properly by isometries on
X, preserving µ. Then for any p > max(1, hδ/ log(2)), G acts properly
by affine isometries on a Lp-space.

One cannot hope to strengthen this result to encompass acylindri-
cal actions: indeed Minasyan and Osin in [MO19] proved that some
acylindrically hyperbolic groups have a fixed point property for all Lp-
spaces. The following corollary applies for instance to a geometrically
finite group action. Observe that these groups are relatively hyperbolic
with virtually nilpotent parabolic subgroups.

Recall that a Hadamard manifold is a complete simply connected
Riemannian manifold, with non-positive sectional curvature. Its cur-
vature is α-pinched negative, where 0 < α ≤ 1, if it takes value in an
interval [κ, ακ] with −∞ < κ ≤ ακ < 0.

Corollary 0.2. Let M be a α-pinched negative curvature Hadamard
manifold of dimension n, and let G be a locally compact second count-
able group acting properly discontinuously and by isometries on M .
Then, for any p > n−1√

α
, G acts properly on an Lp-space.
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Our notion of tangent bundle also gives an alternate proof of the
following result.

Corollary 0.3 (Cornulier-Tessera-Valette [dCTV08]). Let G be a sim-
ple algebraic group of rank 1 over R or C, and let δH denote the Haus-
dorff dimension of the visual boundary of the symmetric space X of G.
Then for any p > max(1, δH), G has a proper affine action on some
Lp-space.

Acknowledgments. We are grateful to Mikaël de la Salle for useful
discussions, and to the anonymous referee for their comments improv-
ing this note.

1. Tangent bundle on a metric space

In this section we define a tangent bundle in the general setting of a
metric measured space.

Definition 1.1. Let (X, d, µ) be a locally compact metric measured
space, where µ is a Radon measure. We say that X has a tangent
bundle TX if:

(1) TX is a Polish space, with a Borel map π : TX → X
(2) for every a ∈ X, the fiber π−1(a) is a Banach space, denoted

TaX
(3) there is a measurable map X ×X → TX, (a, x) 7→ −→ax, so that

−→ax ∈ TaX for all a and all x, and so that −→aa = 0 for all a.

For κ ≤ 0, we say that the tangent bundle has curvature at most κ if
for every C ≥ 0, there exists DC ≥ 0 such that, for each a, x, y ∈ X
with d(x, y) ≤ C, we have

‖−→ax−−→ay‖ ≤ DCe
κd(a,x).

We say that the tangent bundle is proper if there exists a proper func-
tion f : [0,+∞) 7→ [0,+∞) such that, for every x, y ∈ X, for every
p > 1, we have

∫

a∈X
‖−→ax−−→ay‖pdµ(a) ≥ f(d(x, y)).

If a group G acts by measure preserving isometries on X, we say that
TX is G-equivariant if, for every a and g ∈ G, there is an isometry
φg : TaX → TgaX such that for every x ∈ X, we have

φg(
−→ax) =

−−−−−→
(ga)(gx).

Example 1.2. Let M be a uniquely geodesic Riemannian manifold,
and TM its usual tangent bundle. For a 6= x in M , define the vector
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−→ax in TaM to be the unit vector tangent to the geodesic from a to
x. This data endows M with a tangent bundle in the sense above. If
the sectional curvature of M is at most κ, then the tangent bundle
has curvature at most κ. Note that contrary to what the notation
may suggest, in this example, the vector has norm 1, regardless of the
distance between a and x. That tangent bundle is Isom(X)-equivariant.

Example 1.3. Let Y be a countable simplicial tree, with the graph
metric and the counting measure. For every vertex v, we set TvY to
be ℓ2(Lk(v),R), where Lk(v) is the set of vertices adjacent to v. Let
TY be the disjoint union of the spaces TaY . For a 6= x in Y , let −→ax be
the indicator of the neighbor of a closest to x. This endows Y with a
Isom(Y )-equivariant proper tangent bundle with curvature at most κ,
for all κ.

Example 1.4 (Alvarez-Lafforgue [AL17]). Let X be a hyperbolic graph,
uniformly locally finite (that is, all balls of fixed radius have a uniform
bound on their cardinality), with its graph metric and counting mea-
sure. Let δ be a hyperbolicity constant, and for all a ∈ X, let TaX
be the Hilbert (euclidean) space of maps from the ball B(a, 4δ) of ra-
dius 4δ around a, to R. Let TX be the disjoint union of the TaX,
and for each x 6= a, let −→ax ∈ TaX be the map µx(a) : B(a, 4δ) → R

constructed by Alvarez and Lafforgue in [AL17, Théorème 4.1]. This
endows X with an Isom(X)-equivariant proper tangent bundle with
negative curvature. In this construction, the vector −→ax has unit norm
for the ℓ1-norm on TaM .

According to [CD18] this result remains true if one relaxes the as-
sumptions to the case of hyperbolic graphs that are possibly not locally
finite, but that are uniformly fine, allowing coned-off graphs of rela-
tively hyperbolic groups. We will explain how hyperbolic spaces with
controlled growth admit proper tangent bundles of negative curvature
in Section 3.

Definition 1.5. Let 1 ≤ p ≤ ∞. The tangent bundle TX is said to
be p-uniform if there exists a measure space Ω and a Borel isomor-
phism between TX and X × Lp(Ω), such that π corresponds by this
isomorphism to the first projection.

Definition 1.6. Let (X, d, µ) be a locally compact metric measured
space, and assume that X has a tangent bundle TX. For 1 ≤ p ≤ ∞,
we define Lp(X, TX) as the set of measurable functions f : X → TX
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such that f(x) ∈ TxX for every x ∈ X and

‖f‖p :=

(
∫

X

‖f(x)‖pdµ(x)

)
1

p

< ∞.

Remark 1.7. If TX is p-uniform, then there exists a measure space
Z such that Lp(X, TX) = Lp(Z). Indeed in that case we get, up to
isometry, that for all x, TxX = Lp(Ω), and therefore, by the previous
definition, Lp(X, TX) = Lp(X,Lp(Ω)) = Lp(X × Ω), the last equality
being Fubini’s theorem.

2. Actions on Lp-spaces from negatively curved tangent

bundles

We now to explain how tangent bundles of negative curvature relate
to actions on Lp-spaces.

Definition 2.1. Let (X, d, µ) be a locally compact metric measured
space. The volume entropy of X is the number hvol defined as the limit

hvol = lim sup
r→∞

log µ(B(x, r))

r
.

The volume entropy is independent of x since eventually, as r grows
the ball B(x, r) will contain any other point of X.

Theorem 2.2. Assume that a second countable locally compact group
G acts on a locally compact metric measured space (X, d, µ) of fi-
nite volume entropy by measure-preserving isometries. If X has a G-
equivariant tangent bundle with curvature at most κ < 0, then for any
p > h

|κ| , the group G admits an affine action on Lp(X, TX), which is

proper when the tangent bundle is proper.

Proof. For p > h
|κ| , let V = Lp(X, TX). We define a linear isometric

action π of G on V by

πg(f)(x) = φg(f(g
−1x)).

Note that πg(f)(x) ∈ φg(Tg−1xX) = TxX for any g ∈ G and f ∈ V .
We then fix a basepoint o ∈ X, and set fo : X 7→ TX, x 7→ −→xo ∈ TxX,
so that we can define a cocyle by

c : G → ℓ∞(X, TX)

g 7→ fo − πg(fo).

Indeed, since πg(fo)(x) ∈ TxX, the map c is well-defined, and it is a
cocycle since it is a coboundary. We now prove that c is integrable, i.e.
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takes values in V . Fix a g ∈ G and let C = d(o, go). We have

‖c(g)‖pV =

∫

x∈X
‖c(g)(x)‖pTxX

dµ(x) =

∫

x∈X
‖−→xo−−→xgo‖pTxX

dµ(x)

≤

∫

x∈X
Dp

Ce
pκd(x,o)dµ(x) ≤

∫ ∞

0

Dp
Ce

pκrehrdr < ∞,

since pκ+ h < 0.
If we assume furthermore that TX is a proper tangent bundle, we

have ‖c(g)‖p ≥ f(d(o, go)) for some proper function f : [0,∞) →
[0,∞). Since the action of G on X is proper, we deduce that c is
proper as well. �

3. Tangent bundles on hyperbolic spaces

The main result of this section is the construction of a tangent bundle
for a δ-hyperbolic space under some mild assumptions.

Proposition 3.1. Let (X, d) be a locally compact geodesic δ-hyperbolic

space, and some 0 < ε < log(2)
δ

. Consider a non-collapsing Radon
measure µ on X, with finite volume entropy h. Let G denote a group
acting by isometries on X and preserving µ. Then X has a proper,
G-equivariant tangent bundle TX with curvature at most −ε. Further-
more TX can be chosen to be p-uniform (see Definition 1.5) for every
1 ≤ p < ∞.

In order to construct the tangent bundle we need an adaptation of
[GdlH90, Proposition 7.10], suggested in [AL18], that we now describe.
Similar constructions, to define visual metrics on the boundary, can be
found also in [BH99, Proposition 3.21] and [CDP90, Lemme 1.7], but
we want to define a metric in the space instead of the boundary, so
we adapted the construction. Recall that in a metric space (X, d), for
a base point a ∈ X and two points x, y ∈ X, the Gromov product is
defined by

(x|y)a =
1

2
(d(x, a) + d(y, a)− d(x, y))

and that X is δ-hyperbolic if and only if, for any points x, y, z ∈ X,
one has that

(x|y)a ≥ min{(x|z)a, (y|z)a} − δ.

Proposition 3.2. Fix a δ-hyperbolic geodesic space X, and choose

ε,D > 0 such that 0 < ε ≤ log(2)
δ+D

. Let α = De−2Dε and β = 8
ε
. For

any a ∈ X, there exists a pseudo-distance daε on X, invariant under
the isometry group of X, such that

(1) daε(x, y) ≤ βe−ε(x|y)a for all x, y ∈ X,
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(2) αe−ε(x|y)a ≤ daε(x, y) for every x, y ∈ X with d(x, y) ≥ 2D.

Proof. Fix a ∈ X, and define, for x, y ∈ X,

daε(x, y) = inf
c,L

{
∫ L

0

e−εd(a,c(t))dt

}

,

where the infimum is taken over all L ≥ 0 and 1-Lipschitz maps c :
[0, L] → X such that c(0) = x and c(L) = y. From the definition, daε
is symmetric, nonnegative and satisfies the triangle inequality. It may
not be definite though, hence daε is merely a pseudo-distance on X.

(1) We first look at the upper bound for daε . Fix x, y ∈ X and
a geodesic c : [0, L] → X from x to y. Let T ∈ [0, L] such that
|d(a, c(T ))− (x|y)a| ≤ δ. For every t ∈ [0, T ], we have |d(c(t), a)− (T −
t)− d(a, c(T ))| ≤ δ. Therefore
∫ T

0

e−εd(c(t),a)dt ≤ eεδe−εd(a,c(T ))

∫ T

0

e−ε(T−t)dt ≤
1

ε
e2εδe−ε(x|y)a ≤

4

ε
e−ε(x|y)a

since eεδ ≤ 2. Similarly
∫ L

T
e−εd(c(t),a)dt ≤ 1

ε
e2εδe−ε(x|y)a and we have

proved that daε(x, y) ≤ βe−ε(x|y)a .

(2) Let us now look at the lower bound, that we obtain by induction
on L ≥ D. Precisely, fix x, y ∈ X, with d(x, y) ≥ 2D, and fix a 1-
Lipschitz path c : [0, L] → X from x to y, hence L ≥ D. Let L be
the set of all L′ ∈ [D,L] such that, for any interval [u, v] ⊆ [0, L] with
D ≤ v − u ≤ L′, we have De−2Dεe−ε(c(u)|c(v))a <

∫ v

u
e−εd(a,c(t))dt. We

will prove that the interval L is non-empty and both open and closed
in [D,L], so that it has to be the whole [D,L], for any L ≥ D.

We first show that L is non-empty, by showing that [D, 2D) ⊆ L.
When D ≤ L′ < 2D and [u, v] has length L′, then for all t ∈ [u, v] we
have by triangular inequality

2d(a, c(t)) ≤ d(a, c(u)) + d(a, c(v)) + d(c(u), c(t)) + d(c(v), c(t))

≤ 2(c(u)|c(v))a + d(c(u), c(v)) + v − t+ t− u

< 2(c(u)|c(v))a + 4D.

Hence
∫ v

u

e−εd(a,c(t))dt > L′e−2Dεe−ε(c(u)|c(v))a ≥ De−2Dεe−ε(c(u)|c(v))a .

So L′ ∈ L, and [D, 2D) ⊆ L.

That L is open in [D,L] is because the condition defining L is open
and the interval [D,L] is compact.
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We will now show that L is closed in [D,L]. Fix L′ ∈ (D,L], and
assume that [D,L′) ⊆ L, we will prove that L′ ∈ L. Fix an interval
[u, v] ⊆ [D,L] of length L′, and let R =

∫ v

u
e−εd(a,c(t))dt. Let w ∈ [u, v]

such that
∫ w

u
e−εd(a,c(t))dt =

∫ v

w
e−εd(a,c(t))dt = R

2
. We know that the in-

tervals [u, w] and [w, v] both have length shorter than L′. If both inter-
vals [u, w] and [w, v] have length greater than D, the induction hypoth-
esis say that De−2Dεe−ε(c(u)|c(w))a < R

2
and De−2Dεe−ε(c(w)|c(v))a < R

2
. By

hyperbolicity, e−ε(c(u)|c(v))a ≤ 2max{e−ε(c(u)|c(w))a , e−ε(c(w)|c(v))a}, hence
we conclude that

De−2Dεe−ε(c(u)|c(v))a < R =

∫ v

u

e−εd(a,c(t))dt.

Otherwise, one interval, say [u, w], has length smaller than D, and so
d(c(u), c(w)) < D since c is 1-Lipschitz. As (c(u)|c(v))a ≥ (c(w)|c(v))a−
d(c(u), c(w)) > (c(w)|c(v))a −D, we deduce that

e−ε(c(u)|c(v))a < eDεe−ε(c(w)|c(v))a .

Since the length of [u, w] is smaller than D and [u, v] has length at
least 2D, we deduce that [w, v] has length at least D. By the induction
hypothesis we have De−2Dεe−ε(c(w)|c(v))a < R

2
. Thus

De−2Dεe−ε(c(u)|c(v))a < eDεR

2
≤ R =

∫ v

u

e−εd(a,c(t))dt,

since eDε

2
≤ 1, as we have assumed that (D+ δ)ε ≤ log(2). So we have

proved that L′ ∈ L, and hence L is closed in [D,L].

In conclusion, we have De−2Dεe−ε(x|y)a ≤ dε(x, y) for all x, y ∈ X
with d(x, y) ≥ 2D. �

We can now prove Proposition 3.1. The construction of the tangent
bundle uses the pseudo-distances constructed above, and the desired
properties rely on the estimates for those pseudo-distances.

Proof of Proposition 3.1. Let 1 ≤ p < ∞. For any a ∈ X, we set
TaX = Lp(X,R, µ) and define

TX =
⋃

a∈X
TaX = X × Lp(X,R, µ),

which we equip with the product topology. Fix o ∈ X, for each a, x ∈
X, define −→ax ∈ L∞(X,R, µ) by

−→ax(ξ) = daε(x, ξ)
e−d(a,ξ)

f(d(a, ξ))1/p
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where daε is the pseudo-distance defined in Proposition 3.2 and

f : R+ → R+, r 7→ µ(B(o, r))

(which is proper because µ is non-collapsing).

We first notice that −→ax ∈ TaX. Indeed, since µ has finite volume
entropy, there exists a constant h′ ≥ 1 such that f(n+ 1) ≤ h′f(n) for
all n ∈ N and we compute, using that daε ≤ β from Proposition 3.2(1)

‖−→ax‖p =

∫

y∈X

−→ax(y)pdµ(y) ≤

∫

y∈X
βp e−pd(a,ξ)

f(d(a, ξ))
dµ(y)

≤ βp
∞
∑

n=0

e−pn

f(n)
(f(n+ 1)− f(n)) ≤ βp

∞
∑

n=0

(h′ − 1)e−pn = βpE < ∞,

where E =
∑∞

n=0(h
′−1)e−pn. This gives TX the structure of a tangent

bundle to X.

We now show that the curvature of this bundle is at most −ε. For
any a, x, y, z ∈ X, we have

|−→ax(z)−−→ay(z)| = |daε(x, z)− daε(y, z)|
e−d(a,z)

f(d(a, z))1/p

≤ daε(x, y)
e−d(a,z)

f(d(a, z))1/p

hence ‖−→ax−−→ay‖p ≤ Edaε(x, y)
p. Now, according to Proposition 3.2(1),

there exists a constant β > 0 such that daε(x, y) ≤ βe−ε(x|y)a. So, for
any C ≥ 0 and any x, y ∈ X such that d(x, y) ≤ C, we have

‖−→ax−−→ay‖ ≤ E1/pβe−ε(x|y)a ≤ DCe
−εd(a,x)

because (x|y)a ≥ d(x, a) − C, where DC is any constant larger than
E1/pβeεC. That is, the curvature of TX is at most −ε.

It remains to show that the tangent bundle is proper. We choose
C is sufficiently large so that α − βe−εC > 0, where α and β are the
constants of Proposition 3.2 and let C ′ = 2D + 5C

2
> 0, where D is

again as in Proposition 3.2. For x, y ∈ X, we define

A(x, y) = {a ∈ X|d(x, a) + d(a, y) ≤ d(x, y) + C, d(a, x), d(a, y) ≥ C ′},

this is the set of points that are almost on a geodesic between x and
y, and far enough from x and y (it could be empty is x and y are too
close, but we will only need the case when x and y are far apart). For
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any x, y ∈ X, assuming that z ∈ A(x, a), then

(x|z)a =
d(a, x) + C − C + d(a, z)− d(x, z)

2

≥
d(a, z) + d(z, x)− C + d(a, z)− d(x, z)

2

= d(a, z)−
C

2
≥ C ′ −

C

2
= 2D + 2C,

so that, with Proposition 3.2(1), we obtain daε(x, z) ≤ βe−ε(2D+2C).
Similarly, again assuming that z ∈ A(x, a), we have that

(y|z)a =
d(a, y) + d(a, z)− d(y, z)

2

≤
d(a, y) + d(a, x)− d(x, z) + C − d(y, z)

2

≤
d(a, y) + d(a, x)− d(x, y) + C

2
≤ C.

If we furthermore assume that a ∈ A(x, y), we then have

d(y, z) ≥ d(x, y)− d(x, z) ≥ d(x, y)− d(x, a) + d(a, z)− C

≥ d(x, y)− d(x, a)− C ≥ d(a, y)− 2C ≥ C ′ − 2C ≥ 2D.

So with Proposition 3.2(2), we deduce that daε(y, z) ≥ αe−εC. Since
we get the same estimate when z ∈ A(a, y), for any x, y ∈ X and
a ∈ A(x, y), we have

‖−→ax−−→ay‖p =

∫

z∈X
|daε(x, z)− daε(z, y)|

p e−pd(a,z)

f(d(a, z))
dµ(z)

≥

∫

z∈A(x,a)∪A(a,y)

|daε(x, z)− daε(z, y)|
p e−pd(a,z)

f(d(a, z))
dµ(z)

≥

∫

z∈A(x,a)∪A(a,y)

Kp e−pd(a,z)

f(d(a, z))
dµ(z),

where K = αe−εC − βe−ε(2D+2C) ≥ e−εC(α− βe−Cε) > 0.
Assume now that d(x, y) ≥ 4C ′ + 2C and take z ∈ [a, x] such that

d(a, z) = C ′ + C
2

and d(z, x) ≥ C ′ + C
2

(such an element exists because

X is geodesic), one checks that B(z, C
2
) ⊆ A(x, a). Moreover, for any

z′ ∈ B(z, C
2
), we have d(a, z′) ≤ d(a, z) + C

2
= C ′ + C. Hence, for any
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a ∈ A(x, y) and z as above, we have

‖−→ax−−→ay‖p ≥

∫

z′∈B(z,C
2
)

Kp e−pd(a,z′)

f(d(a, z′))
≥

∫

z′∈B(z,C
2
)

Kp e−p(C′+C)

f(C ′ + C)

≥ µ(B(z,
C

2
))Kp e−p(C′+C)

f(C ′ + C)
≥ vKp e−p(C′+C)

f(C ′ + C)
= K ′ > 0.

where v > 0 is a constant given by the non-collapsing assumption on
the measure µ. Hence, for any x, y ∈ X such that d(x, y) ≥ 4C ′ + 2C
and for any p ≥ 1, we have

∫

a∈X
‖−→ax−−→ay‖pdµ(a) ≥

∫

a∈A(x,y)

K ′dµ(a) = µ(A(x, y))K ′.

To conclude that the tangent bundle is proper we only need to see that
µ(A(x, y)) grows at least like the distance between x and y. To do that,
fix x′, y′ ∈ X on a geodesic from x to y such that d(x, x′) = C ′+ C

2
and

d(y, y′) = C ′ + C
2
. Since the C

2
-neighbourhood of a geodesic [x′, y′] is

contained in A(x, y), we have

µ(A(x, y)) ≥ v

(

d(x′, y′)

C
− 1

)

≥
v

C
(d(x, y)− 2C ′ − 2C).

As a consequence, we have for any x, y ∈ X with d(x, y) ≥ 4C ′ + 2C
∫

a∈X
‖−→ax−−→ay‖p ≥

K ′v

C
(d(x, y)− 2C ′ − 2C),

so the tangent bundle is proper. �

4. Applications

We can now finish the proof of our main result.

Proof of Theorem 0.1. Consider X,G, µ and p as in the statement. By
Proposition 3.1, X admits a G-equivariant p-uniform tangent bundle of
curvature at most log(2)/δ. By Theorem 2.2, G admits a proper action
on Lp(X, TX), and with Remark 1.7, we get the desired action. �

Proof of Corollary 0.2. Let n be the dimension of the manifold M and
we can assume, by rescaling, that the sectional curvature of M lies in
the interval −1 ≤ −α. We will use comparisons with the hyperbolic
space, with its Riemannian structure (Hn, gHn). Let µ be the volume
form on M . It is non collapsing because the curvature is less than
−α (by Gunther’s inequality [GHL04, Theorem 3.101 (ii)], as already
mentionned). Since the curvature is bounded from below, we can ap-
ply Bishop’s inequality [GHL04, Theorem 3.101 (i)] to obtain that the
volume entropy h of the measure µ is at most that of the n-dimensional
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real hyperbolic space, i.e. h ≤ n−1. Furthermore, the manifold M has
hyperbolicity constant that that of the n-dimensional real hyperbolic

space rescaled by 1√
α
, which is log(2)√

α
.

Therefore we can apply Theorem 0.1, to conclude that for any p >
n−1√

α
, G acts properly by affine isometries on a Lp space. �

To finish our proof of Cornulier-Tessera-Valette’s result in [dCTV08],
recall that the critical exponent of an action of a group G on a metric
space (X, d) is defined as

δc := lim sup
n

logN(x, r)

r

where N(x, r) is the cardinal of {γ ∈ G | d(x, γx) ≤ r}.

Proof of Corollary 0.3. The Riemannian metric on a rank one symmet-
ric space X for G, is CAT(-1) and defines the Hausdorff dimension δH
of the visual boundary. We consider µ the volume form of this Rie-
mannian manifold. Since G acts transitively and measure preserving, µ
is non-collapsing. According to [Pau97, Theorem 0.2], the critical expo-
nent of any cocompact lattice in X is equal to δH , hence the volume en-
tropy of X is equal to δH . Let TX be the Riemannian tangent bundle,
which has curvature ≤ −1 (see Example 1.2). Note that furthermore
TX is Borel-isomorphic to X × Rn where n = dim(X) and hence it is
p-uniform for all p. Recall that X is Gromov log(2)-hyperbolic. Hence
according to Theorem 2.2, we deduce that for any p > max(1, δH), G
has a proper affine action on Lp(X, TX). Using Remark 1.7, we get
the desired action.

�
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